[1]井上明久,孔凡利,朱胜利,等.伪高熵与团簇状金属玻璃的制备及特点[J].河北工业大学学报,2018,(06):1-12.[doi:10.14081/j.cnki.hgdxb.2018.06.001]
 INOUE A,KONG F L,ZHU S L,et al.Syntheses and features of pseudo-high entropy and clustered glassy alloys[J].Journal of Hebei University of Technology,2018,(06):1-12.[doi:10.14081/j.cnki.hgdxb.2018.06.001]
点击复制

伪高熵与团簇状金属玻璃的制备及特点()
分享到:

《河北工业大学学报》[ISSN:1007-2373/CN:13-1208/T]

卷:
期数:
2018年06期
页码:
1-12
栏目:
材料工程
出版日期:
2018-12-25

文章信息/Info

Title:
Syntheses and features of pseudo-high entropy and clustered glassy alloys
文章编号:
1007-2373(2018)06-0001-12
作者:
井上明久1234孔凡利2朱胜利1Churyumov A 4Shalaan E 3Al-Marouki F3
1天津大学 材料科学与工程学院,中国,天津3000722日本城西国际大学 绿色材料国际研究所,日本,东金283-85553阿卜杜勒阿齐兹国王大学 物理系,沙特阿拉伯,吉达222544莫斯科国立钢铁合金学院,俄罗斯,莫斯科119049
Author(s):
INOUE A1234 KONG F L2 ZHU S L1 Churyumov A4 Shalaan E3 Al-Marouki F3
(1School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China2International Institute of Green Materials, Josai International University, Togane, 283-8555, Japan3Department of Physics, King Abdulaziz University, Jeddah, 22254, Saudi Arabia4MISiS, National University of Science and Technology, 119049, Moscow, Russia)
关键词:
伪高熵合金团簇状金属玻璃非晶形成能力原子尺寸错配混合焓
Keywords:
pseudo-high entropy alloy clustered glassy alloy glass-forming ability atomic size mismatch heat of mixing
分类号:
TG146;TM53
DOI:
10.14081/j.cnki.hgdxb.2018.06.001
文献标志码:
A
摘要:
含有溶质过渡金属Zr基,Fe基和(Fe,Co,Ni)基合金具有大量原子尺寸错配和正混合焓的特性,可以制备成一种新型亚稳态合金——伪高熵(PHE)合金。该新型PHE合金与团簇状金属玻璃的DSC谱图显示:他们具有玻璃化转变过程,一个相对较小的过冷液相区和两个放热峰。即使在第1阶段放热峰温度以上进行加热,合金玻璃状结构仍保持不变,这种独特的玻璃状结构被称为团簇状玻璃结构。团簇金属玻璃具有玻璃形成能力强、结晶相生长速率极低、高粘度、抵抗原子重组能力强、高硬度等特点。而普通玻璃态合金没有PHE和团簇状玻璃合金的这些优良特性。因此,伪高熵金属玻璃在未来有望成为具有新功能特性的工程材料。
Abstract:
Pseudo-high entropy (PHE) alloys which can be regarded as a new type of metastable alloys have been synthesized for Zr-, Fe- and (Fe, Co, Ni)-based alloys containing solute transition metals with large atomic size mismatches and positive heats of mixing. The new type of PHE and clustered glassy alloys exhibit glass transition, followed by a relatively small supercooled liquid region and then two exothermic reactions. The glass-like structure was maintained even after heating above the first-stage exothermic reaction. The unique glass-like structure was named as a clustered glassy structure. The clustered glassy alloys have various unique features of higher glass-forming ability, very low growth rate of crystalline phase, high viscosity, high resistance to atomic rearrangement and higher hardness. These features for the PHE and clustered glassy alloys have not been obtained for ordinary glassy alloys and hence the PHE glassy alloys are promising for future engineering materials with new functional properties.

参考文献/References:

[1] Inoue A, Zhang T, Masumoto T. Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method[J]. Mater Trans, JIM, 1990, 31: 425-428.[2] Inoue A, Nakamura T, Nishiyama N, et al. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method[J]. Mater Trans, JIM, 1992, 33: 937-945.[3] Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region[J]. Mater Trans, JIM, 1989, 30: 965-972.[4] Kim S G, Inoue A, Masumoto T. High mechanical strengths of Mg–Ni–Y and Mg–Cu–Y amorphous alloys with significant supercooled liquid region[J]. Mater Trans, JIM, 1990, 31: 929-934.[5] Inoue A, Masumoto T. Mg-based amorphous-alloys[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1993, 173: 1-8.[6] Zhang T, Inoue A, Masumoto T. Amorphous Zr-Al-TM (TM= Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K[J]. Mater Trans, JIM, 1991, 32: 1005-1010.[7] Inoue A, Zhang T. Preparation of cm size amorphous alloy by arc melting method[J]. Metals, 1994, 64: 47-54.[8] Greer A L. Metallic Glasses[J]. Science, 1995, 267: 1947-1953.[9] Johnson W L. Bulk glass-forming metallic alloys: Science and technology[J]. Mrs Bull, 1999, 24: 42-56.[10] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J]. Acta Mater, 2011, 59: 2243-2267.[11] Suryanarayana C, Inoue A. Bulk Metallic Glasses, Second Edition. CRC Press, 2017.[12] Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Appl Phys Lett, 1993, 63: 2342-2344.[13] Saida J, Matsushita M, Inoue A. Nano icosahedral quasicrystalline phase in Zr65Al7.5Ni10Ag17.5 quaternary glassy alloy[J]. Mater Trans, 2001, 42: 1493-1496.[14] Nishiyama N, Inoue A. Glass-forming ability of Pd42.5Cu30Ni7.5P20 alloy with a low critical cooling rate of 0.067 K/s[J]. Appl Phys Lett, 2002, 80: 568-570.[15] Nishiyama N, Takenaka K, Miura H, et al. The world’s biggest glassy alloy ever made[J]. Intermetallics, 2012, 30: 19-24.[16] Inoue A. High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates[J]. Mater Trans, JIM, 1995, 36: 866-875.[17] Hirata A, Guan P, Fujita T, et al. Direct observation of local atomic order in a metallic glass[J]. Nat Mater, 2011, 10: 28-33.[18] Hirata A, Hirotsu Y, Matsubara E, et al. Mechanism of nanocrystalline microstructure formation in amorphous Fe-Nb-B alloys[J]. Phys Rev B, 2006, 74(18):3840-3845.[19] Yokoyama Y, Fujita K, Yavari A R, et al. Malleable hypoeutectic Zr-Ni-Cu-Al bulk glassy alloys with tensile plastic elongation at room temperature[J]. Phil Mag Lett, 2009, 89: 322-334.[20] Kawashima A, Yokoyama Y, Inoue A. Zr-based bulk glassy alloy with improved resistance to stress corrosion cracking in sodium chloride solutions[J]. Corros Sci, 2010, 52: 2950-2957.[21] Yamanaka S, Amiya K, Saotome Y, et al. Plastic Working of Metallic Glass Bolts by Cold Thread Rolling[J]. Mater Trans, 2011, 52: 243-249.[22] Yamanaka S, Amiya K, Saotome Y. Effects of residual stress on elastic plastic behavior of metallic glass bolts formed by cold thread rolling[J]. Mater Process Tech, 2014, 214: 2593-2599.[23] Kakiuchi H, Inoue A, Onuki M, et al. Application of Zr-based bulk glassy alloys to golf clubs[J]. Materials Transactions(Japan), 2001, 42: 678-681.[24] Ishida M, Takeda H, Watanabe D, et al. Fillability and imprintability of high-strength Ni-based bulk metallic glass prepared by the precision die-casting technique[J]. Mater Trans, 2004, 45: 1239-1244.[25] Inoue A, Shen B, Takeuchi A. Developments and applications of bulk glassy alloys in late transition metal base system[J]. Mater Trans, 2006, 47: 1275-1285.[26] Nishiyama N, Amiya K, Inoue A. Recent progress of bulk metallic glasses for strain-sensing devices[J]. Mat Sci Eng A-Struct, 2007, 449-457: 79-83.[27] Mizushima T. Properties and Applications of“Liqualloy”Magnetic Sheet made of Fe Based Glassy Alloys[J]. Function & Materials, 2009, 29: 31-38.[28] Matsumoto H, Urata A, Yamada Y. Practical Application of the Novel Glassy Metal“SENNTIX”with Excellent Low Core Loss Characteristic[J]. Function & Materials, 2009, 29: 39-45.[29] Okumura K, Kajita J, Kurosaki J, et al. Development of Fe-based metallic glass shot ‘‘AMO-beads’’for peening with high strength and long life[C]. In: 10th Int conf on shot peening (ICSP 10th) . Tokyo, Japan, 2008.[30] Kim H G, Nakata K, Tsumura T, et al. Effect of particle size distribution of the feedstock powder on the microstructure of bulk metallic glass sprayed coating by HVOF on aluminum alloy substrate [J]. Materials Science Forum, 2008, 580:467-470.[31] Zhao Y Y, Inoue A, Chang C T, et al. Composition effect on intrinsic plasticity or brittleness in metallic glasses[J]. Scientific Reports, 2014, 4 srep05733. [32] Yang W, Liu H, Zhao Y, et al. Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity[J]. Scientific Reports, 2014, 4 srep06233.[33] Inoue A, Kong F L, Zhu S L, et al. Peculiarities and usefulness of multicomponent bulk metallic alloys[J]. Alloy Compd, 2017, 707: 12-19.[34] Inoue A, Wang Z, Louzguine-Luzgin D V, et al. Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys[J]. Alloy Compd, 2015, 638: 197-203.[35] Louzguine-Luzgin D V, Bazlov A I, Ketov S V, et al. Crystal growth limitation as a critical factor for formation of Fe-based bulk metallic glasses[J]. Acta Mater, 2015, 82: 396-402.[36] Pang S, Zhang T, Asami K, et al. New Fe-Cr-Mo-(Nb, Ta)-CB glassy alloys with high glass-forming ability and good corrosion resistance[J]. Mater Trans, JIM, 2001, 42: 376-379.[37] Lu Z P, Liu C T, Thompson J R, et al. Structural amorphous steels[J]. Physical Review Letters, 2004, 92(24): 245503.[38] Guo Y N, Inoue A, Han Y, et al. Influence of Ag replacement on the formation and heating-induced phase decomposition of Zr65Al7.5Co27.5-xAgx (x=5 to 20 at%) glassy alloys[J]. Submitted to Acta Mater, 2018.[39] Li M M, Inoue A, Han Y, et al. Influence of Ag replacement on supercooled liquid region and icosahedral phase precipitation of Zr65Al7.5Ni10Cu17.5-xAgx (x=0–17.5 at%) glassy alloys[J]. Alloy Compd, 2018, 735: 1712-1721.[40] Ding J, Inoue A, Han Y, et al. High entropy effect on structure and properties of (Fe,Co,Ni,Cr)-B amorphous alloys[J]. Alloy Compd, 2017, 696: 345-352.[41] Wang F, Inoue A, Kong F L, et al. Formation, thermal stability and mechanical properties of high entropy (Fe,Co,Ni,Cr,Mo)-B amorphous alloys[J]. Alloy Compd, 2018, 732: 637-645.[42] Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758-1765.[43] Tong C J, Chen Y L, Yeh J W, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 2005, 36: 881-893.[44] Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Appl Phys, 2011, 109: 103505.[45] Wang X H, Inoue A, Kong F L, et al. Influence of ejection temperature on structure and glass transition behavior for Zr-based rapidly quenched disordered alloys[J]. Acta Mater, 2016, 116: 370-381.[46] Wang X H, Inoue A, Zhao J F, et al. Liquid ejection temperature dependence of structure and glass transition behavior for rapidly solidified Zr-Al-M (M=Ni, Cu or Co) ternary glassy alloys[J]. Alloy Compd, 2018, 739: 1104-1114.

备注/Memo

备注/Memo:
收稿日期:2018-10-29 作者简介:井上明久(1947—),男,教授,inouebmg@yahoo.co.jp

更新日期/Last Update: 2018-11-21