[1]马 丽,魏佳奥,周丽亚,等.蛋白包覆微晶固定化脂肪酶的制备及催化合成生物柴油的研究[J].河北工业大学学报,2016,(04):37-44.[doi:10.14081/j.cnki.hgdxb.2016.04.007]
 MA Li,WEI Jiaao,ZHOU Liya,et al.Preparation of protein coated micro-crystals and its application in biodiesel production[J].Journal of Hebei University of Technology,2016,(04):37-44.[doi:10.14081/j.cnki.hgdxb.2016.04.007]
点击复制

蛋白包覆微晶固定化脂肪酶的制备及催化合成生物柴油的研究()
分享到:

《河北工业大学学报》[ISSN:1007-2373/CN:13-1208/T]

卷:
期数:
2016年04期
页码:
37-44
栏目:
出版日期:
2016-07-31

文章信息/Info

Title:
Preparation of protein coated micro-crystals and its application in biodiesel production
作者:
马 丽1魏佳奥2周丽亚1冯 凯1赵东磊3
1.河北工业大学 化工学院,天津 300130;2.伯明翰大学 化学院,英国 伯明翰 B152TT;3.河北工业大学 城市学院,天津 300130
Author(s):
MA Li1WEI Jiaao2ZHOU Liya1FENG Kai1ZHAO Donglei3
1.School of Chemical Engineering,Hebei University and Technology,Tianjin 300130,China;2.School of Chemistry,University of Birmingham,BirminghamB152TT,UK;3.City College,Hebei University and Technology,Tianjin 300130,China
关键词:
蛋白包覆微晶固定化脂肪酶麻疯树油生物柴油
Keywords:
Protein-coated micro-crystals Immobilization Lipase Jatropha oil Biodiesel
分类号:
Q814.2
DOI:
10.14081/j.cnki.hgdxb.2016.04.007
文献标志码:
A
摘要:
本文研究了蛋白包覆微晶固定化脂肪酶(PCMC)的制备和性质,并用于催化麻疯树油合成生物柴油。研究表明,以K2SO4为赋形剂、丙酮为脱水剂制备固定化脂肪酶PCMC。在40℃ 异辛烷中浸泡72 h后,PCMC活性可保持初始活性的70%;在80℃的异辛烷中浸泡4 h后,PCMC活性为初始活性的81%;通过催化月桂酸与正辛醇的酯化反应,考察了脂肪酶PCMC的酯化性能,重复使用9次后,月桂酸转化率可保持在61%以上。进一步优化了脂肪酶PCMC催化麻疯树油制备生物柴油的反应条件,正己烷为溶剂,麻疯树油与正己烷摩尔比为1 : 2,醇油比为4 : 1,酶用量为20%(基于麻疯树油质量),反应温度为50℃,反应时间12 h。该条件下,生物柴油的最高产率为94%。
Abstract:
The PCMC was used to prepare immobilized lipase. The preparing conditions and stabilities of immobilized lipase were studied and the biocatalysts were used for biodiesel production from Jatropha oil. K2SO4 was used as excipient and acetone as water miscible organic solvent to prepare lipase PCMC. The obtained PCMC exhibited excellent stability and reusability. The PCMC retained 70% of its initial activity after incubating in iso-octane for 72 h, and retained 81% of the initial activity after incubating in iso-octone at 80℃ for 4h. The conversion of lauric acid can be retained more than 61% After 9 successive reaction cycles. The reaction parameter biodiesel production were optimized and the optimum conditions were as follows: molar ratio of Jatropha oil to n-hexane 1 : 2, temperature 50℃, molar ratio of ethanol to oil 4:1, the dosage of PCMC 20% (w/w PCMC to oil). Under these conditions, the maximum biodiesel yield could reach 94%.

参考文献/References:

[1] Tao J, Kazlauskas R J. Biocatalysis for green chemistry and chemical process development[M]. Hoboken, USA-Wiley Online Library, 2011.
[2] Solano D M, Hoyos P, Hernáiz M, et al. Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs[J]. Bioresour Technol , 2012, 115: 196-207.
[3] Sheldon R A. Enzyme immobilization: the quest for optimum performance[J]. Adv Synth. Catal, 2007, 349(8‐9): 1289-1307.
[4] Tran D N, Balkus K J. Perspective of recent progress in immobilization of enzymes[J]. Acs Catal , 2011, 1(8): 956-968.
[5] GarciaGalan C, BerenguerMurcia , FernandezLafuente R, et al. Potential of different enzyme immobilization strategies to improve enzyme performance[J]. Adv Synth Catal , 2011, 353(16): 2885-2904.
[6] Kreiner M, Parker M C, Moore B D. Enzyme-coated micro-crystals: a 1-step method for high activity biocatalyst preparation[J]. Chem Comm , 2001, 12: 1096-1097.
[7] Kreiner M, Fuglevand G, Moore B D, et al. DNA-coated microcrystals[J]. Chem Comm, 2005, 21: 2675-2676.
[8] Kreiner M, Amorim Fernandes J F, O’farrell N, et al. Stability of protein-coated microcrystals in organic solvents[J]. J Mol Catal B: Enzym, 2005, 33(3): 65-72.
[9] Murdan S, Somavarapu S, Ross A C, et al. Immobilisation of vaccines onto micro-crystals for enhanced thermal stability[J].Int J Pharmaceut, 2005, 296(1-2): 117-121.
[10] Kreiner M, Parker M C. High-activity biocatalysts in organic media: solid-state buffers as the immobilisation matrix for protein-coated microcrystals[J]. Biotechnol Bioeng, 2004, 87(1): 24-33.
[11] Kreiner M, Parker M-C. Protein-coated Microcrystals for use in Organic Solvents: Application to Oxidoreductases[J]. Biotechnol Lett, 2015 27(20): 1571-1577.
[12] Zheng J, Xu L, Liu Y, et al. Lipase-coated K2SO4 micro-crystals: preparation, characterization, and application in biodiesel production using various oil feedstocks[J]. Bioresour Technol, 2012, 110: 224-231.
[13] Pizarro C, Bra?es M C, Markovits A, et al. Influence of different immobilization techniques for Candida cylindracea lipase on its stability and fish oil hydrolysis[J]. J Mol Catal B: Enzym, 2012, 78: 111-118.
[14] Liu Y, Zhang X, Tan H, et al. Effect of pretreatment by different organic solvents on esterification activity and conformation of immobilized Pseudomonas cepacia lipase[J]. Process Biochem, 2010, 45(7): 1176-1180.
[15] Fadhil A B, Al-Tikrity E T B, Albadree M A. Transesterification of a novel feedstock, Cyprinus carpio fish oil: Influence of co-solvent and characterization of biodiesel[J]. Fuel, 2015, 162: 215-223.
[16] Jung H, Lee Y, Kim D, et al. Enzymatic production of glycerol carbonate from by-product after biodiesel manufacturing process[J]. Enzyme Microb Tech, 2012, 51(3): 143-147.
[17] Abigor R D, Uadia P O, Foglia T A, et al. Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils[J]. Biochem Soc T, 2000, 28(6): 979-981.
[18] Hernandez-Martin E, Otero C. Different enzyme requirements for the synthesis of biodiesel: Novozym 435 and Lipozyme TL IM[J]. Bioresour Technol, 2008, 99(2): 277-286.
[19] Li Q, Yan Y. Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase[J]. Appl Energ, 2010, 87(10): 3148-3154.
[20] You Q, Yin X, Zhao Y, et al. Biodiesel production from jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite[J]. Bioresour Technol, 2013, 148: 202-207.
[21] Gu H, Jiang Y, Zhou L, et al. Reactive extraction and in situ self-catalyzed methanolysis of germinated oilseed for biodiesel production[J]. Energ Environ Sci, 2011, 4(4): 1337-1338.
[22] Jiang Y, Shi L, Huang Y, et al. Preparation of robust biocatalyst based on cross-linked enzyme aggregates entrapped in three-dimensionally ordered macroporous silica[J]. ACS appl mater inter, 2014, 6(4): 2622-2628.
[23] Yu C Y, Li X F, Lou W Y, et al. Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: a highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides[J]. J Biotechnol, 2013, 166(1): 12-19.

相似文献/References:

[1]马 丽,赵东磊,郑晓冰,等. 磁性Fe3O4/SiO2复合粒子固定化漆酶及催化去除酚类污染物[J].河北工业大学学报,2016,(01):85.[doi:1007-2373(2016)01-0085-05]
 MA Li,ZHAO Donglei,ZHENG Xiaobing,et al. Immobilization of laccase on Fe3O4/SiO2 magnetic composite particles and its application in phenolic pollutants degradation[J].Journal of Hebei University of Technology,2016,(04):85.[doi:1007-2373(2016)01-0085-05]

备注/Memo

备注/Memo:
通讯作者:赵东磊(1981-),男(满族),讲师
更新日期/Last Update: 2016-10-28